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ABSTRACT

This paper deals with some multiplicity results for periodic orbits of

Hamiltonian systems and for solution of a non-linear Dirichlet problem. These

results follow from an abstract theorem of Lusternik-Schnirelman type as

applied to an invariant equation of the form Lu + VF(u) - 0 in a Hilbert
K2 N" -.

space X L (AiR);,, where L is an unbounded self-adjoint operator and F

is a C strictly convex function.
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SIGNIFICANCE AND EXPLANATION

This paper is concerned with existence of multiple solutions of an

equation of the form

(*) Lu + VF(u)= 0

where L is a self-adjoint operator and P is a strictly convex function.

We assume that VF(0) = F(0) = 0, so that u = 0 is a solution of (*).

Loosely speaking, it is reasonable to expect the number of non-trivial

solutions of (*) to be related to the number of eigenvalues of the operator

-L which are crossed by the function 2F(u)/Iu 2 as Jul varies from 0 to

. We show that under certain conditions this is actually the case.

Applications are given to existence of multiple T-periodic solutions of a

conservative Hamiltonian system Ju + VH(u) = 0 and to existence of multiple

non-radial solutions of the Dirichlet problem for -Au + g(u) = 0 in the unit

disc of the plane.
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MULTIPLE CRICIAL POINTS OF INVARIANT FUNCTIONALS
AND APPLICATIONS

* *0
D. G. Costa and M. Willem

1. Introduction

This paper is devoted to some multiplicity results for periodic orbits of

Hamiltonian systems and for solutions of a non-linear Dirichlet problem.

These results follow from an abstract theorem of Lusternik-Schnirelman type,

which is a slight (but useful) extension of Ekeland-Lasry's Theorem 111.1 in

CIO].

IWe first consider the equation

(0) Lu + VF(u) 0

2 N
in a Hilbert space X = L (A;i3), where L is an unbounded self-adjoint

operator with no essential spectrum and F e CI(R,R) is strictly convex. We

assume that VF(O) = 0, so that u = 0 is a solution of ('). We assume

also, without loss of generality, that F(0) = 0. Loosely speaking, it seems

reasonable to expect the number of non-trivial solutions of (*) to be related

to the number of eigenvalues of -L crossed by 2F(u)/Iut2  as tul varies

from 0 to -. As we shall see more precisely in Theorem 2, this heuristic

statement actually holds when (*) is equivariant with respect to some group

action, so that Lusternik-Schnirelman theory can be used. We apply this

theory to the "dual action" introduced by Clarke and Ekeland [7] for

Hamiltonian systems. The abstract framework and main results are presented in

section 2.
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In section 3, as a first application, we consider the existence of T-

periodic solutions of a conservative Hamiltonian system

Ju + VH(u) - 0 ,

where H e C (R2n,R) is strictly convex and u - 0 is an equilibrium. Using

the natural action of S1 - R/T provided by the time translations (cf.

Fadell-Rabinowitz [121 and Benci [21), we show that if lim lUl '2H(u)/1ul

2< 2w/T 4 2wJr/T < limu 2H(u)/lul for some J e u*, then the above

Hamiltonian system possesses at least jn non-constant T-periodic solutions

describing distinct orbits.

For the non-linear Dirichlet problem

-Au + g(u) 0 in 9

u = 0 on 391

it is classical to use the Z2-action when g is odd (5]. When 0 is a disc

in R2 , the symmetry of the domain was used in (9] instead of the symmetry of

the non-linearity. In this case, a natural S1-action is provided by the

rotations. We extend the multiplicity result of [9] to some resonant cases.

Moreover the use of the dual action simplifies the proof. It is interesting

to note that we obtain, as in (9], non-radial solutions.

Our arguments depend only on the common properties of the usual index

theories (cf. (12,2], for example]. In particular, for the Dirichlet problem,

other symmetries of the domain could be exploited. More general situations

and applications to a non-linear string equation will be considered in a

subsequent paper.
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2. The abstract framework. Main results.

Let X be a Hilbert space on which the group S acts through

isometries S(e), i.e., for every e e S , S(e) X + X is an isometry such

that

5(Se1 + e2) = SCO )S(e2 )

S(0) = Id ,

(e,u) - S(O)u is continuous

We denote by Fix(S1) C X the subspace of fixed points of X under the

S -action,

Fix(S 1) = {u e x I s(e )u = u ve e SI

and by ind the cohomological index [12] or the geometrical index [2].

!I

Theorem 1. Let e e C (XR) be an invariant functional bounded from below

and satisfying the Palais-Smale condition (PS): every sequence (um ) such

that #(u ) is bounded and *'(u) + 0 has a convergent subsequence. If

- fu e x I *(u) < 0} is such that

Fix(S 1) n n n {u e x I '(u) = 0} 0

and if 1 contains a compact invariant set Z such that

ind n

then 9 contains at least n distinct S -orbits of critical points of *.

Proof. It is similar to the one in Ekeland-Lasry [10], with

r = (Y C I Y is compact, invariant, ind y ) k) ,

using also the fact that any compact invariant set which is free of fixed

points has a finite index.

-3-
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Remark. Theorem I is the S 1-version of a result of Clark [6] for the Z2

action. But Fix(S 2 ) - (0) so that, if * is even, condition

Fix(S2) A a A {u e x f *'(u) - 0} -

is equivalent to *(0) ) 0.

The framework to which the above multiplicity theorem will be applied is

the following. We consider the equation

(*) LU + VF(U) - 0

2 N
in a Hilbert space X - L (S;R), where L : D(L) C X + X is an unbounded

self-adjoint operator with a discrete pure-point spectrum o(L) - (Al, A.

of finite multiplicity, and

I N(1) F e C (R ,) is strictly convex, F(0) - VF(0) - 0

(2) 0 C F(u) IC 2 + a

The only interesting case is when L is not monotone. So we assume that

O(L) n (- ,0) F and denote by A_ the first negative eigenvalue of L.

In the situation described above, it follows that the range of L is

closed, R(L) - ker(L) - Y, and the operator L D(L) r% Y + Y has a

compact inverse K : Y * Y with with

(i) (Kv,v) 1 •

for all v e Y. On the other hand, if we also assume

j2 ju2
(2) B - a 4 F(u) 4 Y + a, 0 4 a, 0 < B 4 y ,

2 2

then the Legendre-Fenchel transform of F,4

G(v) F F*(v) = sup((v,u) - F(u)]

u

1
is a strictly convex C function satisfying

-4-
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-- -.a (G(v) -- +(V
Y 2 8 2

Therefore, we can define the dual action * e C (Y,R) byIS

CV)= 1(Kv,v)x + G(v)

Lemma 1. If v e Y is a critical point of * then there is a solution

u e D(L) of () such that v = -Lu.

Proof. If v is a critical point of * then

(Kv + VG(v), h)x  0
tx

for all h e Y - R(L), so that w = Kv + VG(v) e ker(L). Letting

u = w - Kv = VG(v) we obtain, by duality, v = VF(u). Since Lu -v, it

follows that Lu + VF(u) 0.

Remark. Related abstract formulations of the Clarke-Ekeland dual action were

introduced in [11] and [14].

Lemma 2. If F satisfies (1), (2') with

(3) y <-X 1

then the dual action

(a) is bounded from below;

(b) satisfies the Palais-Smale condition.

Proof. (a) It follows from (i) and (ii) that

(iii) *(v) I ( + IvI2 I - ,

hence is bounded from below since y < -< "-

-5-



(b) Let (vk) C Y be such that (v ) is bounded and 0'(vk) + 0.

Then, by (iii), (vk) is bounded in X. Going, if necessary, to a

subsequence we can assume that vk + v weakly in Y. Since K is compact,

Kvk + Kv in Y. On the other hand, since 0'(vk) + 0, we have

Kv + VG(v k ) - PVG(vk ) fk + 0 in Y
k k)k

where P denotes the orthogonal projection on ker(L), or, by duality,

vk = VF(-Kvk + PVG(v k ) + fk )

Therefore, since ker(L) is finite dimensional and VG(v ) is bounded (VG
k

has linear growth), we can assume, going to a subsequence if necessary, that

PVG(v ) w and obtain
k

vk +VF(-Kv + w) in Y

hence vk +v in Y.

Lemma 3. Suppose F satisfies (1), (2'),

" (4) lim 2u_±> -

lul+-o Jul2 -j

' where X- e 0(L), X_ -1' and

(5) Z ker(L-A ) *..*® ker(L-A )C L(iRN)
•-1 -j

Then there exists P > 0 such that

0(v) < 0 for v e Z = {v e zJ IvI x -I

Proof. Assumption (4) implies the existence of C > 0 and c > -X_ such

that F(u) > clul 2/2 for Jul 4 £. On the other hand, there is P' > 0 such

that IVG(v)l 4 £ for Ivi 4 P'. Since G(v) = (u,v) F(u) with

u = VG(v), we obtain, when lvi 4 P',

-6-



G(v) . max Hu'v) - 2

lul"c

2 2
max -(uv) - i]=

Now, for v e Z, it is easy to verify the estimate

(Kv,v) - lvi 2
x X x

Combining these estimates and using (S) we obtain

4(v) 4 +[uv <0

_j

for v e z with 0 < Nvi 4P'. The proof is complete since Z is finite
L

dimensional.

Remark. It follows from lemma 2 that * has a minimum and from lemma 3 that

min < 0. Thus, by lemma 1, under assumptions (1), (2'), (3) - (5), equation

(*) admits a non-trivial solution. This result is due to Coron (8]. In order

to obtain more non-trivial solutions we shall introduce a group action.

From now on we assume there is an S -action on X through isometries

I
s(e), e e s , and that

(6) VF X + X and L D(L) C X + X are equivariant.

(For the unboanded operator L, we mean that S(6)D(L) D(L)

I
and LS(8)u - S(e)Lu for all u e D(L), 0 e s .

Then, it is easy to see that Y - R(L) is invariant, VG : X + X and

K : Y + Y are equivariant and, hence, the dual action 0 is invariant. We

denote by V = Fix(S a) CX the subspace of fixed points of X under the S

action,

v = fu e x I s(O)u u ve e s1  .

-7-



It is clear that V is an invariant subspace and that L0  D(L) n V + V,

the restriction of L to V, is an equivariant self-adjoint operator with

0(L 0 C 0(L).

Lenma 4. Under assumptions (1), (6) and

2
(7) if A_ I sup o(L 0 ) 0 (-,0) > - , (VF(u) - VF(v), u-v) n riu-vl

for some 0 < n < -

the only solution of (*) in V is u - 0.

Proof. If a(L ) n (- ,0) = p then L + VF is strictly monotone on V and
0

the result follows. So we assume (L 0 ) 0 (-m,0) ' F and denote by A_ the

first negative eigenvalue of L0 , so that, by (7),

(VF(u) - VF(v), u-v) 4 nVu-vl , 0 < n <

It follows (cf. Prop. A.5 in [4]) that

(VF(u) - VF(v), u-v) -VP(u) - VF(v), 1

Therefore, if u e V is a solution of (o), we obtain

I IVF(u) 2 (VF(u),u)x = (-Luu) 2 2_u
IVn ) x X A IUx -- A 2l

and, since n < -A , we get VF(u) = 0, i.e., u " 0, by the strict

monotonicity of VF.

A final assumption we shall make, which is satisfied in most

applications, is the following

NN
(8) K Y + L (QR N ) is continuous and ker(L) C L (Q;R N )

Theorem 2. Under assumptions (1) - (8), there exist at least n - ind Z

distinct S -orbits of solutions of () outside Fix(Sl). Moreover, u 0 is

the only solution of () in Fix(S ).

-8-



Proof. We start by showing that v = 0 is the only critical point of

in V = Fix(St). Indeed, let v e V be a critical point of *, so that

Kv + VG(v) w e ker(L) .

From the equivariance of K and VG it follows that w e V, hence u w -

Kv e V. But then lemma 4 implies u = 0, i.e., w = Kv = 0, so that v 0.

Now, let us first assume (2') instead of (2). Then, lemmas 2, 3 and

theorem I applied to the dual action 0 imply the existence of at least

n = ind E distinct orbits {L(O)v. I e e S of critical points of *.

(Note that assumption Fix(S1) n a A {v e Y I '(v) = 01 = of theorem 1 is

automatically satisfied from what we just showed above.) By lemma 1, to

each vj corresponds a solution uj of (*) such that vj - -Luj. If uj

and uje describe the same orbit then u = S(e)uj., for some 0, so that

v = -Luj = -LS(O)u. = S()(-Lu.) = S()v, i.e.# v and v are in

the same orbit. But then j = j'.

In order to get rid of assumption (2'), we let

-1= - li- 2F(u) 1
min{- (uX_ l U ) (-X- - n)) >

1 +

and introduce an increasing convex function x e C (R ,R) such that

X(t) = 0 , if 0 4 t 4 R

2t
X(t) =d2 , if 2R 4 t <

Then the function

F(u) = F(u) + x(tuI)

satisfies (1), (2'), (3), (4), (6), (7), so that the equation

(*) Lu + VF(u) - 0

has at least n distinct solutions uj, j = 1,...,n, describing distinct

orbits. In order to complete the proof of theorem 2, it suffices to find a

bound for IUjL= independent of R.

-9-



'0

Let v, = -Luj and let ; be the dual action associated to equation

('). It follows from lemma 3 that *(v.) < 0. Also, if Y is such that
)

-f- 2F(u)
d+ im 2 -1 ' 

lulI lul
then

F(u) ' 2 + a
2

for some a > 0 independent of R. We obtain from (iii)

0 > (V 1 1 1 2
-1 y

so that

2 2 0
(9) ILuI x  IV I M

for some M > 0 independent of R.

On the other hand, by assumption (4), there is r > 0 such that

minulI=rF(u) > 0 and so, by the convexity of F, we obtain

blul - a ( F(u) 4 F(u)

for some a,b > 0. Therefore,

b.IaI - a F(u F(U.) (VF(u.),u) = (-Luj,u.)

and, after integrating and using (i), we obtain

IL I~ iLu2

bluj 1 4 -(Luju j)x + ajIS ( - _- IX + aIQI

(10)
- + al.

-1 "[

Estimates (9), (10) together with assumption (8) imply a bound for Iu I

independent of R, so that the proof of theorem 2 is complete.

9-
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3. Applications.

We first consider the number of non-constant T-periodic solutions of a

Hamiltonian system

(11) Ju + VH(u) 0,

where J(x,y) = (-yx). We assume that 0 is an equilibrium, i.e.,

VH(0) = 0, and that H(0) = 0.

Theorem 3. Let H e C 1(2n ,R), T > 0 and j e 3*. If H is strictly

convex,

(12 2H(u) 2
(12) 1 TC2lul. lul2

(13) urn 2H(u) >2jilul+-o lu2  T

then the system (11) has at least jn non-constant T-periodic solutions

describing distinct orbits.

Proof. Let L be the operator defined by Lu = Ju with T-periodicity

condition on X L (0,T; 2n). Then L is self-adjoint, O(L) (2w/T)z and

every eigenvalue is of finite multiplicity. Assumption (12) implies (2) and

(3) and assumption (13) implies (4) with _1 = -2w/T, _j = -2jir/T and

F = H. Since the eigenfunctions are

2kwt t, si 2ki t_
(cos -%) e + (sin----)Je , k e Z

T T

assumption (5) is satisfied. The group S acts on X through the time S

translations S(O) defined by

(s(e)v)(t) = v(t+e)

It is clear that L and VF X + X are equivariant. Moreover, Fix(S ) is

the set of constant functions so that V = ker(L). Also, it is easy to verify

* -11-



(8). And, since

2ir 2iir
Z ker(L + - 0 o ker(L + )

T T

the index of ( (v e z I Ivix = p) is jn. So, by theorem 2, there exist

at least jn distinct S -orbits of non-constant solutions of (11) in X.

Remark. 1) When j = 1 assumptions (12) and (13) imply the existence of a

solution with minimal period T (7]. we obtain n T-periodic solutions,

but T is not necessarily the minimal period.

2) In general, no more than n distinct orbits with minimal period can 0

be expected.

3) After this work was completed we learned from P. H. Rabinowitz and V.

Benci that related multiplicity results were proved by H. Amann-E. Zehnder (1]

and V. Benci (3]. We remark that their results were obtained by a different

approach under the supplementary assumption the VH is linear at 0 and at

Theorem 2 applies also tq Hamiltonians of the form H(pq) ipI 2/2+ /2

V(q). We assume as before that VV(0) = 0, V(0) = 0.

Theorem 4. Let V e c' (Rn,), T > 0 and i e w*. If V is strictly convex,

2V(u) 47
2 2

lul- lul T

l 2V(u) >_4i2__

1U1+O 112

then the system

+ VV(u) = 0

has at least Jn non-constant T-periodic solutions describing distinct

orbits.

-12-



Remarks. 1) The proof of theorem 4 is similar to the proof of theorem 3. It

seems that there is no reduction of one result to the other.

2) Related results are contained in [2] but under the assumption that

2V"(O) exists and that either V(u)/Iul + 0 as Jul + - or VV is linear

at *

We now consider the non-linear Dirichlet problem on the unit disc 0

in R2 . Let A be the operator -A with Dirichlet condition on X

2( R.2
L (9,R). The eigenvalue of A are of the form U = v where V is a

strictly positive zero of some Bessel function Jn, n e N, of the first

kind. The associated eigenfunctions are

J (Vr)cos ne, J n(Vr)sin ne
nn

Note that if v is a zero of J0 the J 0 (vr) is a (radial) eigenfunction

~2.
associated to 4 2 Letting O(A) = {LI,1 2,...}, where

0 < P < P then each eigenvalue Pi is either double or simple. (It

follows from a deep result of C. Siegel, cf. (13, pg. 4851, that the strictly

positive zeros of J and J are distinct if n, O n2 .)

Theorem 5. Let F e C (R,R) be a strictly convex function with F(0) -

F'(0) = 0. Assume that

-2F(u)

(14) - k1 '

lulI u

2F (u)
(15) lim u Uk j2 k "k-j

lul 0 u

(16) f(u)-f(v)
u-v -< k-t

where k > 3, Z-1 > j > I are such that (OkP+1,..., k1} i { >0 I J0 (4') = 0) =

= 17, J0 (Vi- ) - 0, and f = F'. Then the problem

-13-
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(1( -Au ku + f(u) 0 in n

(17)

u 0 on ai

has at least j non-radial geometrically distinct weak solutions. (We say

that two function ul, u2  are geometrically distinct if after an arbitrary

rotation u, remains different from u2.)

Proof. We let L be the operator A - I k with Dirichlet condition on

X - L2 (9R), so that L is self-adjoint and o(L) - {IJ-ik I j - 1,...].

Again, assumption (14) implies (2) and (3) and assumption (15) implies (4)

with _I Uk I - 1k' j = Uk-j - 'k Also, assumption (5) is automatically

I
satisfied. We let the group S act on X through the rotations,

(S(e)v)(x) - v(R(O)x)

where R(8)x R(O)(xx 2) cos8 - x2sinS, sin + xcos). Then it is

2 ( 1  - ~ 'n + ~ls)

1
clear that L and f - F' X + X are equivariant and Fix (S) is the set

of radial functions. Finally, assumption (16) implies (7) with

X = - - k And, since
-1 k-I k

Z - ker(-A - k * ker(-A - uk-j

where each summand is two-dimensional, the index of E - {v e Z I IvIx -p

is J. Therefore, theorem 2 implies the existence of at least j non-radial

geometrically distinct weak solutions of (17).

-14-
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